Лауреаты конкурса «Свободный полёт - 2013»

    О фонде  Конкурс Свободный полёт  Конкурс творческих идей  Собрание конкурсных работ  Физика  Математика  Это интересно 

Опыты Милликена и Иоффе по измерению заряда электрона. Дискретность электрического заряда.

Дата: 1910–1913.

Методы: количественное сравнение непосредственных наблюдений с теорией.

Прямота эксперимента: непосредственное наблюдение + теоретический анализ.

Искусственность изучаемых условий: искусственные условия, при которых применима используемая модель.

Исследуемые фундаментальные принципы: дискретность электрического заряда.

 


В опыте Роберта Эндрюса Милликена (1858–1953) исследовались микрокапли масла К (см. рис. справа), наэлектризованные трением о воздух, а также захватом ионов воздуха, ионизированного ультрафиолетовым излучением. Если поместить такую каплю в вертикальный сосуд с воздухом, то она начнет падать, и скоро установится ее постоянная скорость падения , соответствующая равновесию силы Архимеда, силы вязкого трения и силы тяжести:

где  — плотность, объем и радиус капли соответственно,  — коэффициент сопротивления воздуха, выражающийся через его вязкость  согласно закону Стокса,  — плотность воздуха. Если теперь в сосуде создать направленное вертикально поле с напряженностью , то в левой части уравнения выше появится слагаемое , где  — заряд капли. В опыте масло, пройдя через специальную распыляющую камеру Р, направлялось в пространство между двумя металлическими пластинами, разность потенциалов между которыми составляла до нескольких киловольт (см. рис.). Вначале, при отключенном напряжении, капля начинала падать, при этом за ней наблюдали в микроскоп М, фиксируя установившуюся скорость падения. Однако до того, как капля падала на нижнюю пластину, напряжение включали, чтобы электрическое поле поднимало каплю, и вычисляли установившуюся скорость подъема капли вверх. Вовремя включая и отключая поле, каплю много раз заставляли подниматься и спускаться вниз, при этом нетрудно было вычислить ее заряд. Оказалось, что он был различным в различных измерениях, но все время кратным одному и тому же значению элементарного заряда

Это значение заряда связали впоследствии с зарядом электрона. На самом же деле считается, что капля просто захватывала в процессе своего движения положительно или отрицательно заряженные ионы.

Если говорить об особенностях эксперимента Милликена, то можно сказать, что в нем использовался специально очищенный воздух, а камеру, по которой поднималась и опускалась капля, освещали светом электрической дуги. Это с одной стороны делало каплю видимой, а с другой стороны ионизировало воздух, что давало возможность капле захватывать его ионы. Кроме того, как показано на рисунке, распылитель находился над верхней пластиной, в которой, однако, находилось малое отверстие О, через которое лишь отдельные капли попадали в пространство между пластинами, в котором существовало электрическое поле. В опыте Милликена использовались капли размером порядка микрометра.

Похожий эксперимент был проведен Абрамом Федоровичем Иоффе (1890–1960) с разницей всего в пару лет (Иоффе опубликовал свою работу в 1913 г., уже после Милликена, поэтому в литературе обычно ссылаются на последнего). В его опыте электрическим полем уравновешивались не капли масла, а металлические пылинки, которые электризовались при помощи ионизирующего излучения (тут, однако, заряд должен был быть всегда положительным, поскольку пылинка должна была терять электроны в результате поглощения квантов этого излучения). Поскольку плотность металла значительно превышает плотность воздуха, сила Архимеда является несущественной, кроме того, в опыте Иоффе наблюдалось равновесие частиц, а не их равномерное движение, которое обеспечивалось регулировкой напряжения между пластинами.

Особенность опыта Иоффе была в том, что пылинки, вбрасываемые в камеру-конденсатор, не были изначально нейтральными, однако можно было заметить, что под действием ультрафиолетового излучения они теряли отрицательный заряд, что говорило именно о таком знаке заряда электрона. Это не что иное как фотоэффект, открытый и исследованный Столетовым.

В результате опытов Милликена и Иоффе был установлен фундаментальный для физики факт — дискретность электрического заряда — и найдена количественная характеристика дискретности. Тем не менее, в современной теоретической физике существуют объекты, обладающие дробным зарядом. Это кварки, заряды которых по абсолютной величине составляют и  элементарного. Однако эти частицы не существуют в свободном виде, а их связанные состояния — адроны — обладают уже целым зарядом (в единицах элементарного). Тем не менее, в опытах по рассеянию высокоэнергетических частиц на адронах были действительно получены значения зарядов кварков внутри них, кратные трети элементарного заряда.

Величина элементарного электрического заряда тесно связана с безразмерной постоянной тонкой структуры, которая определяет силу электромагнитного взаимодействия и известна сегодня с поразительной точностью:

Одно из теоретических объяснений дискретности заряда было предложено в начале XX века Калуцей и Кляйном на основе представления о высших размерностях пространства-времени. Тем не менее, дискретность электрического заряда остается на сегодняшний день принятой, но не объясненной.

<<К предыдущему эксперименту  |  Электродинамика  |  К следующему эксперименту>>